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Introduction

I Topic models are widely applied to discover thematic topics
I The discovered topics do not always make sense to end users

I Confuse two or more themes into one topic
I Two different topics can be (near) duplicates
I Some topics make no sense at all

I We proposed Interactive Topic Modeling (ITM, Hu et al. 2013)
I Uses tree-based topic models
I Allows users to encode their feedback iteratively

I Question: Does ITM help users? and how?
I Solution: Perform user study for ITM

Tree-based Topic Models

I Model the correlations of words
I Positive correlations: encourage words to appear in the same topic
I Negative correlations: push words away from the same topic
I Use tree prior instead of a symmetric prior to model the correlations
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Interactive Topic Modeling

I Encode users’ feedback as correlations
I Give non machine learning experts a voice to update topics
I Update the topics iteractively and iteratively
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Interface

I Interface for ITM user study
I Web-based application with a HTML and jQuery front end, connected via Ajax and JSON
I Includes two parts: refine topics and a test
I Multiple ways to explore the corpus to answer the questions

I Start page and topic display

I Check and refine topics

Rename your topic here

Type new words here

Limited by vocabulary

Display document
(drag for context)

I Query and answer questions

Global text query

Check related documents
Text query within a topic

(by clicking a topic)

User Study

I Evaluate whether and how ITM helps users to understand data
I User study set up

I Refining topics (15 mins) and a test (30 mins) (Wacholder and Liu, 2008)
I Experimental group (ITM) and control group (LDA)
I 10 questions including legislation about taxes, US-Mexico border, etc
I 10 topics, 20 users (randomly assigned to a group)

I Legislative corpus
I Transcripts of political debates for the 109th congress (2005 to 2006)
I Available online from GovTrack
I A subset of legislative bills on immigration, estate tax, stem cell research, etc.
I Use each turn as a document for topic modeling, so 2250 documents

I User population
I 20 participants (10 for each group), all fluent in English
I Participants are either students pursuing a degree in computer science,

information science, linguistics, or working in a related field
I Most users have little or no knowledge about congressional debates (a

post-test user survey)
I Users have varied experience with topic models

I Evaluating the refined topics
I Each turn (document) is associated with a single bill, the true cluster label
I Assign each doc to a cluster of its highest-probability topic
I Variation of information: information distance between two partitions (↓)
I “x2” found: homeland security, immigration, abortion, energy, flag burning, etc
I “x2” successfully reduced variation of information (so did the other users)
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I Evaluating the test
I Graded by two graders and compared the scores of users in two groups
I With Scott’s π agreement 0.839 (Artstein and Poesio, 2005)
I No significant difference between the scores of two groups
I Experimental group had a much smaller variance
I Playing with ITM might inspire users on the query words
I Refined topics are more correlated with underlying bills
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I More analysis
I Some users in control group performed well and used the initial topics a lot
I Some users in experimental group didn’t understand and perform very well
I Some users in experimental group complained they didn’t have enough time
I Most users like the interface
I Users from both groups said that topics helped them to answer questions
I Some users commented some questions were too detailed
I Large variance, should not overstate, need more users

Conclusion

I ITM provides a tool for non-machine-learning experts to update topics
I ITM assists users in exploring a large corpus
I Topic modeling is helpful for users to understand documents
I Need more users: our population was too diverse and too small
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