User Study for Interactive Topic Modeling

Yuening Hu, Alison Smith and Jordan Boyd-Graber

ynhu@cs.umd.edu, amsmit@cs.umd.edu, jbg@umiacs.umd.edu

University of Maryland, College Park

Introduction

- Topic models are widely applied to discover thematic topics
- The discovered topics do not always make sense to end users
- Confuse two or more themes into one topic
- Two different topics can be (near) duplicates
- Some topics make no sense at all

We proposed Interactive Topic Modeling (ITM, Hu et al. 2013)

- Uses tree-based topic models
- Allows users to encode their feedback iteratively
- Question: Does ITM help users? and how?
- Solution: Perform user study for ITM

Tree-based Topic Models

- Model the correlations of words
- Positive correlations: encourage words to appear in the same topic
- Negative correlations: push words away from the same topic
- Use tree prior instead of a symmetric prior to model the correlations

Generative process

- Draw multinormal distributions

Overview

- Interface for ITM user study
 - Web-based application with a HTML and jQuery front end, connected via Ajax and JSON
 - Includes two parts: refine topics and a test
 - Multiple ways to explore the corpus to answer the questions

- Start page and topic display

Query and answer questions

Interactive Topic Modeling

- Encode users' feedback as correlations
- Give non machine learning experts a voice to update topics
- Update the topics interactively and iteratively

User Study

- Evaluate whether and how ITM helps users to understand data
- User study set up
 - Refining topics (15 mins) and a test (30 mins) (Wacholder and Liu, 2008)
 - Experimental group (ITM) and control group (LDA)
 - 10 questions including legislation about taxes, US-Mexico border, etc
 - 10 topics, 20 users (randomly assigned to a group)

- Legislative corpus
 - Transcripts of political debates for the 109th congress (2005 to 2006)
 - Available online from GovTrack
 - A subset of legislative bills on immigration, estate tax, stem cell research, etc
 - Use each turn as a document for topic modeling, so 2250 documents

- User population
 - 20 participants (10 for each group), all fluent in English
 - Participants are either students pursuing a degree in computer science, information science, linguistics, or working in a related field
 - Most users have little or no knowledge about congressional debates (a post-test user survey)
 - Users have varied experience with topic models

- Evaluating the refined topics
 - Each turn (document) is associated with a single bill, the true cluster label
 - Assign each doc to a cluster of its highest-probability topic
 - Variation of information: information distance between two partitions
 - "x2" found: homeland security, immigration, abortion, energy, flag burning, etc
 - "x2" successfully reduced variation of information (so did the other users)

- More analysis
 - Some users in control group performed well and used the initial topics a lot
 - Some users in experimental group complained they didn't have enough time
 - Most users like the interface
 - Users from both groups said that topics helped them to answer questions
 - Some users commented some questions were too detailed
 - No significant difference between the scores of two groups

- Graded by two graders and compared the scores of users in two groups
 - "x2" successfully reduced variation of information (so did the other users)

Conclusion

- ITM provides a tool for non-machine-learning experts to update topics
- ITM assists users in exploring a large corpus
- Topic modeling is helpful for users to understand documents
- Need more users: our population was too diverse and too small

Email: ynhu@cs.umd.edu, jbg@umiacs.umd.edu

Webpage: http://www.cs.umd.edu/~ynhu/